GAMMA-BUTYROLACTONE INDUCED ABSENCE EPILEPSY IN WISTAR RATS

T. Karamahmutoğlu, F. Onat

Marmara university, School of Medicine, Department of Medical Pharmacology, Istanbul, Turkey

Introduction

We studied the resistance to the development of kindling in the chemical model of generalized absence epilepsy induced by gamma-butyrolactone (GBL), a prodrug of gamma-hydroxybutyric acid, excluding the effect of an abnormal genetic background.

Materials and methods

Three groups of adult wildtype male Wistar rats under anesthesia were implanted with bilateral cortical recording electrodes for the GBL group (GBL) and/or bipolar stimulation electrodes into the right basolateral amygdala for theKindling group (KI) alone and GBL+Kindling group (GBL+KI). Rats in the KI and GBL+KI groups were stimulated twice daily at the afterdischarge threshold until they reached Racine’s stage 5 seizure state. For the GBL+KI group the stimulation was 20 min after intraperitoneal (i.p.) injections of GBL. The GBL rats only received GBL i.p. twice daily over the course of 30 injections.

Results

The KI animals had stage 5 seizures after 15 stimulations, whereas the GBL+KI rats showed stage 5 seizures after 27 stimulations. The mean numbers of stimulations needed for the development of the first stage 3, 4 or 5 generalized seizures were significantly higher in the GBL+KI group than the KI group.

![Figure 1. Development of kindling in the Gamma-butyrolactone (GBL) + Kindling (KI) and KI groups](image1.png)

By repeated GBL injections, GBL animals displayed spontaneous bilateral synchronous SWDs in the baseline EEG on the Monday morning session after the GBL-free weekend period.

![Figure 2. Mean duration of spontaneous SWDs after 1., 2. and 3. weekend](image2.png)

![Figure 3. Cumulative duration of spontaneous SWDs after 1., 2. ve 3. weekend](image3.png)

Conclusions

We conclude that the resistance to amydala kindling in the GBL model can be modulated by the absence seizure mechanism alone, without the intervention of an abnormal genetic background.
